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Abstract 

It is shown that the original Hopf formulation for the time evolution of probability 
distributions over classical fields follows deductively from the space-time version of the 
theory. 

1. Introduction 

Considerable interest is attached to the modern functional differential 
dynamical theory which describes the time evolution of a probability 
distribution over a statistical ensemble of classical fields. A generic functional 
differential equation for the characteristic functional O associated with a 
classical field-theoretic probability distribution was originally derived by 
Hopf (1952) and used by others (see Rosen, 1960), but an alternative 
space-time version of the probabilistic dynamical theory has been employed 
recently (Rosen, 1967, 1970). The purpose of the present article is to show 
how the original and alternative space-time formulations are related. We 
fix notation and clarify mathematical and physical ideas by first reviewing 
the original Hopf formulation and the more recently employed space-time 
version of the theory. Then we exhibit the formal relationship between the 
two alternative dsecriptions for the dynamics of probability distributions 
over classical fields. It is shown that the original Hopf formulation follows 
deductively from the space-time version of the theory. 

2. Original Hopf  Forrnulation~ 

The dynamical equations of the field theory are expressed in first-order 
form 

ar 
O--t-= Q[~] (2.1) 

1"This work was supported by a grant from the National Science Foundation. 
See Hopf (1952) and Rosen (1960). 
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with the N real-valued field variables denoted by the N-tuple 

= (~,(x) . . . . .  q~N(x)) 

and with the space-time coordinates abbreviated as 

(2.2) 

x = (x, t) = (xb x2, X 3, t) (2.3) 

Each of the N components of  Q[r = (Q1 [r . . . .  , QN[r in (2.1) is a func- 
tional of ~b at the instant of  time t, involving an arbitrary spatial transform 
and/or arbitrary spatial derivatives of r Although the form of Q[r may 
change with time through an explicit dependence on t, time derivatives of 
the components of  r are not supposed to appear in Q[r The definition 
of additional field variables may be required to bring the most general 
field theory which is local in the sense of time into the first order real- 
variable form (2.1). 

To illuminate the generic notation in equations (2.1) and (2.2) by way 
of  example, we cite the Navier-Stokes field theory for boundary-free 
incompressible fluid flow. Here we have r  =(ul(x),u2(x),u3(x)), the 
solenoidal velocity field, and the dynamical equatiOns are cast in the form 
(2.1) as 

Ou 
0-7 = vV2 u - (u. Vu) tr - Q[u] (2.4) 

with tr denoting the transverse (solenoidal) part of the inertial term. 
Compatible with equation (2.4) for all time, the incompressibility con- 
dition V. u = 0 need only be retained as an initial value requirement on 
the velocity field. 

Let us now consider a statistical ensemble of field-theoretic dynamical 
systems governed by equation (2.1). If  dP~[r denotes the probability 
measure assigned to ~b(x) at t, we have 

dPt[~(x, t)] = dP0[r 0)1 (2.5) 

where $ = r  is the solution to (2.1) for t > 0  subject to the initial 
value r 0). Thus the Gaussian probability measure 

/function~ r 
dPt[~(x)]=[ o f t  j[exp(  f f 

with ~ t3 (x ' , x" , t )=  ~/~(x",x',  t) a real positive-definite symmetrical dis- 
tribution (generalized function) is admissible for all t ~> 0 if and only if 
the dynamical equation (2.1) is linear, 

O~(x, t) f o ~ ( X ,  X t, t) ~/3(X t , t )  d 3 x t ~- Qot [~] (2.7) Ot 
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with ~/3(x ,  x', t) a generic real distribution.t In fact it follows from (2.5) 
that the symmetrical distribution in (2.6) is related to the distribution 
~s x', t) in (2.7) by the dynamical equation 

x", t) c , ,, 
) Ot " ,(x, x ,  t ) ~ 4 ( x ,  x , t ) +  

+ ~ r ( x ' , x , t ) ~ y ~ ( x , x " , t ) ) d S x  (2.8) 

On the other hand, if the dynamical equation (2.1) is non-linear [as ex- 
emplified by the Navier-Stokes equation (2.4)], a Gaussian probability 
measure (2.6) is inadmissible for all t > 0. We note that conservation of 
probability is expressed in the general case by 

allf6(x)_ dPt[4(X)] = 1 (2.9) 

a normalization condition which is manifestly compatible with (2.5). 
Ensemble averages of functionals of $ at t, 

(F [~ (x ) ] ) t -  f F[(J(x)]dPt[$(x)] 
all ~(X) 

f F[~(x, t)] alP0 [q~(x , 0)] (2.10) 
al l  O(x, 0) 

can be evaluated by functional integration~, for a prescribed initial prob- 
ability measure dPo [~(x)] if the general solution to equation (2.1) is available. 
In the event that the general solution to (2.1) is unavailable, we can proceed 
by introducing the Hopf  characteristic functional associated with the 
probability distribution, 

-- 1 + i fy~(x)  (4~(x)), d 3 x 

- ~  f y,(x')  y#(x") (~,(x')  6~(x"))t d 3 x' d 3 x" + 

+ " "  (2.11) 

a series which embraces all correlation functions with the real-valued 
functions 

Y = (Yl (x) , . . . ,  yN(x)) (2.12) 

t Local spatial derivative terms in Q[qq appear in s as spatial deriv- 
atives on 3 ( x - x ' ) ;  for example, Q[$] = (const.)Va$ yields .s (const.) 
a .~ V 2 8(x - x'). 

~: For  a recent introduction to field-theoretic functional integration methods see 
Rosen, G. (1969), Formulations of Classical and Quantum Dynamical Theory, Chap. 4. 
Academic Press, Inc., New York. 
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independent of t. For example, the probability measure (2.6) produces 

f f (2.13) 
where the real positive-definitive symmetrical distribution ~-~(x',x", t) is 
the inverse of the distribution in (2.6), 

f ~ , ( x ' ,  x, t) ~r/~(x , x", t)d3x = 8~/38(x' - x") (2.14) 

In the general case, ensemble averages (2.10) are extracted from tb by 
functional differentiation, 

Hence, ensemble averages at t are obtainable immediately from a closed- 
form expression for the characteristic functional at t. By virtue of (2.10) 
we have 

r (2.16) 
a l l  ~b(x, 0 )  

and thus the dynamical evolution of the characteristic functional is given 
by the Hopf equation 

for a field governed by equation (2.1). It is easily verified that the Hopf 
equation (2.17) is generally compatible with properties of the characteristic 
functional manifest in the definition (2.11), such as 

@[0; t] --- 1 (2.18) 

and 
@[y; t]* -= @[-y, t] (2.19) 

In particular, for a linear theory with dynamical equations of the form 
(2.7) the Hopf equation (2.17) is satisfied by the characteristic functional 
(2.13) if the symmetrical distribution in (2.13) satisfies the dynamical 
equation implied by (2.8) and (2.14), 

0~-~(x', X ~ , t) 
f (5r x, t)~,t3(x, x", t) + at 

+ ~'~,~,(x',x,t)~,(x",x,t))d3x (2.20) 

3. Space-Time Version of the Theoryt 

We now consider an alternative way of assigning probability to the 
field-theoretic dynamical systems in the statistical ensemble. Namely, we 

t See Rosen (1967, 1970). 
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assign a probability measure dP[r to all space-time functions 
= r  ~(x, t) with t in a prescribed (finite or semi-infinite) interval 

0 < t -<< T. The probability measure dP[r is non-negative for a physically 
admissible field history ~ = r which satisfies equation (2.1) and dP[~] 
vanishes for all space-time functions q~ = ~(x) which do not satisfy (2.1) 
for 0 < t < T. This property of dP[r being concentrated on physically 
admissible ~ = r is expressed by 

(3.1) 

an equation holding for all space-time functions r = r all space points 
x, and all values of t in the interval 0 ~< t < T. A characteristic functional 

where 

[([s I~T~[/'Z] ~- alli(x) exp i /z~(x)r dP[r (3.2) 

/z = (/xl(x) . . . .  ,/~N(x)) (3.3) 

are real-valued space-time functions and d x - d  3 x dt, is associated with the 
probability measure dP[r It follows from (3.1) that the characteristic 
functional (3.2) is a solution to the equations 

.0 8 

for all component index values of the N-tuple functional differential 
operator in the parentheses and all admissible space-time points x. In the 
case of a linear theory with dynamical equations (2.7) the solution to (3.4) 
is ( isil ) �9 [/~] = exp --~ o,T'~f3(x',x")t~,(x')t~[~(x")dx'dx" (3.5) 

in which the real positive-definite symmetrical distribution ~3f',,g(x',x")= 
d~(x" ,  x') satisfies the dynamical equation 

x") 
Ot' f ~a ~(x', x, t') ~4g'e~(x, x") t=,' d3 x (3.6) 

Ensemble averages of functionals ofq~ = r with t in the interval 0 ~< t < T 
are extracted from the characteristic functional ~[/~] by the formula 

#=0 
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Obtainable immediately from a closed-form expression for the character- 
istic functional (3.2), the expectation values (3.7) for field quantities 
measured at times in the interval 0 < t -<< T are clearly more general than 
the expectation values (2.10) for field quantities measured at the instant 
of  time t. Thus, for example, the generic space-time correlation functions 
<r r with 0 < t', t" < T are given by (3.7), while only the equal- 
time space correlation functions with t' = t"= t are given by (2.10). 

4. Relationship Between the Alternat&e Formulations 

From the definitions in the preceding paragraphs it follows that 

dPt[~(x')] = f dV[r (4.1) 
al  I ~ (x ' )  ~ ~b(x')[l'=t = ~(x')  

Therefore the Hopf  characteristic functional (2.11) is related to the char- 
acteristic functional (3.2) by 

O[y; t] = ~ t ]  (4.2) 

where 
~, = ~t(x') =y(x')  g(t' - t) (4.3) 

To illustrate the general relationship provided by (4.2), consider the 
characteristic functional (3.5) for a linear theory; in this special case we 
have 

~[~t]  = exp (--~ f f o,4{'~(x',x")t,:t,=ty~(x')y~(x")d3x' d3x ") 

= O[y; t] (4.4) 

and hence by using (2.13) we obtain 

o~'~,/3(x', x", t) = af~/3(x', x") It'=,-=, (4.5) 

an expression which is readily seen to satisfy equation (2.20) as a consequence 
of equation (3.6). Now the variation of (4.2) produces 

f gO[y; t] . . . .  
gO[y; t] - j ~ oy~,tx ) d a x' 

g~(x  ) .=~, gm~(x̂ ') dx t 

_ /" g~[/L][ g (x"d3x  ' (4.6) 
- J y . t  ) . 

and hence we have 
80[y; t] _ 3~[tz ] ~r__~, (4.7) 
gy(x') gt<x') " 
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Mathematical induction then confirms that higher-order functional 
derivatives of qS[y; t] and ~[/z] are related by the anticipated equations 

~" q~[y; t] ~ [ ~ - - ]  . (4.8) 
3y(x(X)) �9 �9 �9 8y(x (~)) ~/.~(X(1)) � 9  ~ 6 ( X  ( ) )  t(1)= .#:.~tt(n)=t 

Differentiating (4.2) with respect to t, we find 

T 
8qS[y; t] 3@[/L] 8 , 

Ot f f 3( t ' - t ) )dx '  .=~ ~(y~(x ) 
0 

= 3 ' 

. 4 

In (4.9) we have used equations (3.4) and (4.8); by virtue of (4.9) we see 
that the Hopf equation (2.17) is an implication of (4.2) and the functional 
differential dynamical equations (3.4). Specializing (3.7) for a functional 
F[r = F[r that depends exclusively on the field at the instant 
of  time t, we find 

(F[~(x, t)]) = f F[q~(x, t)] dP[~(x)] 
all ~(x) 

= f F[~(x)]dP,[~(x)]==-(F[~(x)])t (4.10) 
all ~b(x) 

where (2.10) is recalled. Hence, the expectation value formula (2.10) is 
an implication of (4.2) and the expectation value formula (3.7). We have 
thus shown that the original Hopf formulation follows deductively from 
the space-time version of the theory. 
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